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Dissipative heat exchange in generalized Couette flow of a nonlinearly visco- 
plastic liquid between two parallel plates is investigated theoretically. 

We investigate the steady-state, stabilized flow of a nonlinearly viscoplastic medium 
between two parallel plates. The upper plate moves in its plane at the constant velocity U. 
A constant pressure gradient, [grad p[ = A, acts in the clearance. The pressure gradient 
may be due to a mechanical or any other factor [1,2]. The orientation of the vector U either 
coincides with the sense of ~ or is opposite to it. 

It is assumed that the characteristics of the medium are independent of the temperature. 
The axial flow of heat is neglected. The boundary conditions are the following: I) The 
lower plate is isothermal (T = T~ = const), while the upper, mobile plate is adiabatic; II) 
the upper plate is Isothermal (T = T u = const), while the lower one is adiabatic. 

We place the axis of abscissas 0x along the lower plate, while the axis of ordinates Oy 
is perpendicular to it. 

As was shown in [I], depending on the rheological characteristics of the liquid, the 
magnitude and direction of the pressure gradient, and the plate velocity, three types of de- 
veloped flow are possible: I) flow with a quasisolid zone (core) inside the flow; 2) flow with 
the core adjacent to either the upper or the lower plate; 3) flow without a core in the 
clearance. The type of flow is determined by a pair of dimensionless parameters (~, Bo). 

We shall use a generalized model to describe the rheological behavior of the liquid [3]: 

1 1 1 
T-=f = ~ - +  (~p?)-~ (I) 

with  the  cons t an t  r h e o l o g i c a t  pa ramete r s  ~o, ~p, m, and n. 

For the  i n i t i a l  assumptions and v i scous  d i s s i p a t i o n ,  the  h e a t  problem is  s t a t e d  as f o l -  
lows: 

dV 0 = ~  d2T -~ T . . . .  (2) 
dy ~ dy  

while the boundary conditions are 

o r  

dT lu = 0 " (3) I) T (O) = T~, dy =a 

~ 

I I) d - - T  I = 0 ,  T ( h ) = T u .  ( 4  ) 
dy  I y=o 

The dimensionless velocity distribution in the channel is described by the relationships [I] 

Z h k .,..\e. h r h- 

O~ h=O 

~2( [ )  1 +  1 ~ ( _ _ l h ~ k  . . ~  = ) , ~  11~ -- ~o) ~h -- (I -- ~o)~k], ~-2 ~ ~ ~< 1, (5)  
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Here, the subscript ! pertains to the zone of shear flow at the lower plate; the subscript 2 
corresponds to the shear flow zone at the upper plate; the subscript 3 refers to the zone of 
quasisolid flow (core); 

r  r~ I -_  ~,~. ~ + ~ -  ~ ~ m! 
~ m  ~O ' 8 k - . ~  - -  C m  ~ 

~ and ~u a r e  t h e  l o w e r  and t h e  uppe r  c o r e  b o u n d a r i e s ,  r e s p e c t i v e l y ;  ~o i s  t he  d i m e n s i o n l e s s  
c o o r d i n a t e  o f  t h e  p l a n e  where  t h e  s h e a r i n g  s t r e s s  z v a n i s h e s .  

I t  s h o u l d  be  n o t e d  t h a t  [1] 

%z - -  ~o = %0 - -  %* = 15o, ~ - -  %~ = 215o. ( 6 )  

Considering the zonal character of the flow, we obtain the following equations describing the 
heat transfer [2]: 

l n 

d.~ . . . .  O, O~g<.~g~, 

[,( 
d y  ~- ' " ,. d g  / J d y  

. . . .  o, t t ~ o < ~ y ~ .  
dtl ~ 

Introducing the dimensionless temperature O = (T- T*)/T*, we arrive at the dimensionless 
statement of the problem: 

dF" + ~- (̀%~ - -  %) [(%0 - -  ~)- ; - -  15~;1 'n= 0, 0 ~< ~ ~< %~, 

d~O~. , z (% _ ~o) [(% - -  ~o ) - ; - -  ~ s  I m =  0, ~ ~< ~ ~< ~, 

w i t h  the  b o u n d a r y  c o n d i t i o n s  (we c o n s i d e r  o n l y  c a s e  I f o r  the  t ime b e i n g ) :  

o , (o )  = o, . . e % [  = o 

and the conditions for the conjunction of solutions with respect to the zones 

o ,  (~,) = o~ (%,), o2 (%~) = o3 (h),  

(7) 

( 8 )  

do, t I do21 do31 
d% ~,= d~ ~,' d% ~,-- ~ I~ (9) 

The c o n d i t i o n s  f o r  t h e  c o n j u n c t i o n  o f  s o l u t i o n s  (9) a r e  f o r m u l a t e d  on t he  b a s i s  o f  t h e  a d d i -  
t i o n a l  a s s u m p t i o n  t h a t  t he  t he rma l  c o n d u c t i v i t y  c o e f f i c i e n t  k does  no t  change in  p a s s a g e  
th rough  t he  b o u n d a r y  b e t w e e n  the  zones  o f  the  s h e a r  and t he  q u a s i s o l i d  f l o w s ,  i . e . ,  

After a number of transformations, we obtain the solution of problems (7)-(9) in the follow- 
ing form. 

For the conditions where the core is inside the flow, 

o (~) = 

• ( - -  , ,.~ - -  ( ~ o - -  D~!~+ ~ [(1 - ~o) 'ph-~ 2~o~'~-I1 § ~o% 
h = O  

cz k = o  q~k 
oo 

E ( _ _ l ) k F ~ { . . ( ~ _ _ ~ o ) ~ k +  ~ (1__ ~o)~--11_ ~o~ ~ 2~o ~o~h--1}, ~ 2 ~ J ~ l ,  
~z q~k q:h 
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where 

n z ' 3 n  - -  k F4 ~ rn "v- 
mn : C,,, ; f~t~ : 

( m  + 2 n  ~ k ) ( m  -~- 3 n  ~ k) n 

For the conditions where the core is adjacent to the upper plate, 

<~) 

h=O 

o ~ < ~ ,  
eup(~) = 

4=0 

For the case where the core is adjacent to the lower plate, 

O~F.L ~--L-[ d -~oF4- l~- ' l ,  o<~<~,~, ( -  
= q~k 

et~(~.) = 

k=(  q94 J 
~ 2 ~ - ~ 1 -  

(12) 

(13) 

For the situation where the core has "passed" beyond the upper plate, 0~1: 

O~ h=O q)k 

For the case where the core has "passed" beyond the lower plate, 0~|: 

_ r ] OZ(~) 

h=0 ~k 

Similarly, we obtain the solution for the case where the upper plate is maintained at a con- 
stant temperature, while the lower plate is insulated adiabatically. We denote this solution 
by 0(~). Using the same notation of the temperature profiles in relation to the flow condi- 

tions as in (10)-(15), we obtain 

-s { } ( - -  1)~F~,, - -  (~o - -  ~)~h__ ~ ~-' ~ _ _  -I- (1 ~ ~.o) '~4 - -  (1 ~ ~o) , 0 ~ ~ ~ ~,, 
~k r q~h 

h=0 

= " . ( 1 6 )  

1~-~ (--1)~F'~nn {--(~--~~ q-~ I ~-~ (2[~4-~.--~-1) ] "  + (1-- ~~ lq)4 ~~ 2~4 [~4"~1, ~z.~<~ ~< 1 ' 

e ~4 ~ (17) Oup(~) = = 

~-~-~(--1)~Famn([~o ~4- 1 ~o~4-'), ~i~<~<l, 
h=O 

otp(~) = 

~ -  ~ , , d t -  ) m. 130~4 - - ' ( ~0+1~0 )+ (1 - -~ -oF" - - '  ~4-, i~  4 , o ~ < ~ < ~ , ,  
4=0 ~ h  (P4 

- ) 
cp4 q~4 

h=O 

(18)  
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Rig. I. Temperature profiles (Bo = 0.2; B = I0): 
l) a = 0.05; 2) 0.I; 3) 0.3; 4) 0.5; 5) 0.7; 6) 
0.05; 7) ~ =--0.I; 8) ~ =--0.3; 9) ~ = -0.5; I0) 

=-0.7. 

~u ([) --= ~ ~ (--1)kF~n I - - ( ~ 0 -  ~)~:-- ~'~-~ 
h = 0  

~~ -k (~-o--1) ~h} 0 ~ 1 ,  (19) 

~Z (~ )  : =  --~'-~ (--|)hfi~mn {~ ( ~-  ~0)~'~ A - 0 ~  (-- ~~ ~ - - ~ | ' h  
h ~ 0  

( -  ~)~- '  } 
) ~  + (l - L F " ,  0 ~ ~ I. (20) 

Numerical  c a l c u l a t i o n s  show t h a t  the  f o l l o w i n g  e q u a t i o n s  a re  s a t i s f i e d  f o r  the  t e m p e r a t u r e  
profiles (~) and (~): 

o(~; =, 80)=~(I--~;--~, *8~ 
d d 

- -  - o ( 1 ;  ~, 80) . . . .  ~(0~ ~, ~ )  
d~ d~ (21) 

Cons ide r ing  r e l a t i o n s h i p s  (21) ,  we s h a l l  d i s c u s s  the  r e s u l t s  on ly  f o r  the  case  of  the  a d i a -  
b a t i c  upper  and the  i s o t h e r m a l  lower p l a t e s .  A diagrammat ic  i n t e r p r e t a t i o n  of  the  r e s u l t s  
i s  g iven  f o r  the  Shvedov--Bingham model .  

The t e m p e r a t u r e  d i s t r i b u t i o n s  as f u n c t i o n s  of  s p e c i f i c  v a l u e s  of  the  pa rame te r s  a and Bo 
a r e  shown in  F ig .  1. The ha t ched  s e c t i o n s  of  the  curves  p e r t a i n  to  the  q u a s i s o l i d  c o r e .  

The f low c o n d i t i o n s  a re  de te rmined  by the  p a i r  of  pa rame te r  va lue s  (~, ~o),  as was shown 
in  [1] .  This  paper  a l s o  p r o v i d e s  the  e q u a t i o n s  d e t e r m i n i n g  the  type  of r e g i o n  in  the  0~8o 
p lane  c o r r e s p o n d i n g  to  a p a r t i c u l a r  s e t  of  c o n d i t i o n s .  We s h a l l  deno te  the  r e g i o n  of  f low 
wi th  the  c o r e  in  the  channe l  by D~, the  r e g i o n  wi th  the  co re  a t  the  lower  p l a t e  by D2, the  
r e g i o n  wi th  the  co r e  a t  the  upper  p l a t e  by Ds, and the  r e g i o n s  where the  co re  has "pas sed"  
beyond the  lower or  the  upper  p l a t e  by D, or  Ds, r e s p e c t i v e l y .  

1 

The mean v e l o c i t y  W = ! W(~)d~ f o r  t he  f low c o n d i t i o n s  where the  co r e  i s  i n s i d e  the  
0 

channe l  depends on bo th  t he  pa ramete r s  a and 80. In  a l l  o t h e r  cases  (even where the  co re  i s  
present in the flow region and is adjacent to one of the plates), the mean velocity W is de- 
termined only by the parameter a and is independent of Bo, i.e., of the core width. For in- 
stance, for (a, 80) from D3 [l], $o = ~o + /~ 2~, so that, with an allowance for (6) and 

< 0, 

= 
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Fig. 2. Distributions of the mean-mass temperature @ (solid curves) 
and of the temperature gradient d| at the isothermal plate 
(dashed curves); B = I0. 

Fig. 3. Nu numbers at the isothermal plate. 

Rheodynamic conditions with an immobile core relative to the plate can be considered as pure 
nonplastic shear flow in a narrower channel. This can probably explain the fact that the 
mean velocity W is independent of the parameter Be that characterizes the core width. 

Let us determine the relationship between the Nusselt numbers at the isothermal plate 
and the parameters (~, Bo, ~), 

1 ( do 'i , 

where the mean-mass temperature is defined by the equation 

i i 

o o 

Considering that the qualities figuring in (22) are given by 

we obtain 

(22) 

(~) • r 
= -  ~ , ~ ( ~ ;  ~ ,  8o), O 117 (~) 1 v e  - -  ~ (~; ~ ,  8o), 

dO I x be  
-~ - ~ . ~ ( ~ ,  8o), 

l 

x be I 
- -  ~ ,~n(~,  o~, Po) a~ - -  ~m,, (~,  80) ve . 

J 
o 

N u i s  : l ---- ~ r ~ .  (c~, 8o)-  ( 2 3 )  
• I I' r ve 

Om~ (~; ~ ,  80) ~mn (~; =, ~ )  d~. 
Ct Ot , 

0 

Consequently, for the problem under consideration, the intensity of heat exchange at the iso- 
thermal plate does not depend on the dissipative parameter 

B ~ I Ah z (Ah) n 
= - -  = Br Sen . . . .  �9 

~8o ~ p T ~  ' 

it is determined only by the pair of (~, Be) values for the assigned values of m and n. 

The functions ~mn(~, Be) are very cumbersome, however, in principle, it is difficult to 
derive them from the obtained solutions for each specific set of flow conditions. 
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Fig. 4. Heating of the adiabatic plate as a 
function of the parameters a and 13o; B = 10. 

The role of the rheological factor in heat exchange at the isothermal plate is elucidated 
in Figs. 2 and 3. The maximum heat exchange intensity occurs when the vectors A and U are in 
opposition. According to calculations, the highest heat exchange intensity occurs for I~I 
0.08 and Bo ~,0.5, i.e., for A ~ 2To/h and U ~ 0.|6Toh/~p. The minimum heat exchange inten- 
sity is observed for A ~ 2To/h and U ~ 0.1Toh/~p with the vectors A and U having the same 
sense. 

We readily obtain the expressions for the heating of the adiabatically insulated plate: 

Oad - -  

OC 
4=0 

C{ 
4=0 

(-- 1)4Fkm,~ [--(1 ~ ~o,)~h-~ (i --~o) ~4-1qo4 .+. 

+ ~o % 2~ol~O %-I ] ~4  �9 , D~, 

(-- l)kF~n [-- (I -- ~o)~h+ (1 --~4~~ + 

(24) 

4=0 (P~ 

h=o ~h 

The curves of @ad as functions of the parameters a and Bo for the fixed value B = 10 are 
shown in Fig. 4. It is evident that, for a fixed ~o (i.e., for the assigned value of the 
pressure gradient A), the heating of the adiabatic plate increases with |a I (i.e., with an 
increase in the velocity of the upper plate U). The heating is more intensive if the vectors 
A and U have the same sense. It should also be noted that, for fixed Bo values and I~l > 
Ia*(Bo)[, the relationship| becomes linear. Here, a*(Bo) is the value corresponding to 
the "departure" of the core from the flow region. 

The relationships (16)-(20) and (21) can be used in a similar manner to obtain the re- 
sults for the intensity of heat exchange at the isothermal plate and the heating of the adia- 
batic plate in case II. 

NOTATION 

Dimensional quantities: %, thermal conductivity coefficient; U, velocity of the upper 
plate; grad p = A, pressure gradient; T, shearing stress; To, ultimate shearing stress; ~p, 
analog of plastic viscosity; m and n, nonlinearity parameters of the flow curve; h, channel 
width; y, vertical coordinate; y~ and y2, core boundaries; V(y), flow velocity; T(y), 
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temperature of the medium; # = dV/dy, shearing rate; T*, temperature of the isothermal 
= , = _ -- Tu)/Tu, plate. Dimensionless quantities: W V/U flow velocity; | (T T~)/T~; ~= (T * * 

temperature of the medium; $ = y/h, vertical coordinate; ~i and ~2, core boundaries; to, co- 
ordinate of the plane where the shearing stress vanishes; ~ = ~pU/(Ah)m/nh, Bo = To/Ah, and 
~= AUh2/XT *, parameters; B =~/~, dissipative parameter; Nuis, Nusselt numbers at the iso- 
thermal plate; Sen = Toh/DpU , St. Venant--Ii'yushin number; Br = ~pU2/kT *, Brinkman number. 
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EFFECT OF SELF-OSCILLATIONS ON THE HYDRAULIC RESISTANCE OF 

A VORTEX TUBE 

Yu. A. Knysh UDC 532.526.4 

It has been established experimentally that the hydraulic loss increases as tan- 
gential self-oscillations develop in a swirled flow. 

Swirling of liquid and gas flows is widely used in modern technology as an effective 
means of intensifying the heat and mass exchange processes, It has been noted that the ex- 
penditure of energy on flow advancement increases with an increase in the heat exchange inten- 
sity. This effect is most strongly pronounced in the case of short vortex tubes with high 
vorticity at the inlet [I]. The increase in the heat exchange intensity and the resistance 
is usually explained by the effect of mass forces, which generate secondary flows and an ele- 
vated turbulence level. The other well-known characteristic of a swirled flow -- its capacity 
for spontaneous excitation of intensive, regular velocity and pressure pulsations -- is usually 
not taken into account. However, the results of many experiments indicate that self-oscilla- 
tions are closely related to transport processes [2]. Thus, the highest energy exchange in- 
tensity and a considerable reduction in the throughput of a vortex tube are observed under 
conditions where the pulsation amplitude is at a maximum. The present article advances the 
hypothesis that self-oscillation processes are among the most important factors which deter- 
mine the acceleration of heat exchange and the increase in the hydraulic resistance in a vor- 
tex tube. The experimental data given below refer to the interrelationship between oscilla- 
tions and the hydraulic loss, and they support to a certain extent the above point of view. 

The experimental simulator is shown schematically in Fig. I. An endless-screw swirler 2 
is mounted in a cylindrical tube I, whose length is L and the radius ro = 8 mm. The dimen- 
sions of 10 different screws make it possible to vary the degree of flow vorticity in the 
range from A = 1.76 to A = 16. The vorticity parameter is calculated by means of the expres- 
sion A = ~r~ sin B/Fin after Abramovich [3]. The swirler is fastened on a mobile hollow rod 
3; by moving this rod, the distance L can be varied in the 5-400-mm range. If necessary, 
the central cavity of the tube can be made to communicate with the ambient by opening the 
valve 4 inside the through-passage in the rod. The sides of the tube are provided with holes 

5 which allow a dye to be fed into the flow to make it visible or allow pressure and velo" 
city data units to be mounted. 

The water flow 6, which arrives from the ~delivery branch pipe 7 while the valve 4 is in 
the "closed" position, produces in the cylindrical tube beyond the swirler a hollow vortex 8, 
which performs combined rotary and translational motions. Liquid from the ambient is drawn 
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